个人简介:
现任威廉希尔体育副经理,享受国务院政府特殊津贴专家,北京市名师。长期从事工业节能环保技术、能源与资源的有序转化与高效利用、非线性热科学理论与应用等研究,完成了国家有关部委的多项重点科研项目、国际合作项目以及与企业的合作研发项目,获国家发明和实用新型专利30余项,在国内外有重要影响的学术期刊上发表论文200余篇。出版和翻译出版科技专著3部。先后获得国家科技进步奖1项,北京市科技进步奖2项,中国冶金科学技术奖3项,为促进我国流程工业的节能减排和废弃物全资源化利用做出了重要贡献。
教育及工作经历:
教育经历:
1979.9~1983.7 WilliamHill登录入口(原北京钢铁学院)冶金系 冶金炉专业 工学学士
1983.9~1985.12 WilliamHill登录入口(原北京钢铁学院)冶金系 热能工程专业 工学硕士
1990.03~1992.09 作为联合国开发计划署(UNDP)选派的高级访问学者, 在The Catholic University of America从事煤炭清洁利用国际合作研究
工作经历:
2016.04~至今 威廉希尔体育 教授、副经理
2009.10~2016.04 WilliamHill登录入口机械工程学院 教授、副经理
2001.10~2009.10 WilliamHill登录入口热能工程系 教授、系副主任
1992.10~2001.10 WilliamHill登录入口热能工程系 副教授
1985.12~1992.10 WilliamHill登录入口热能工程系 讲师
研究方向:
1)工业节能与低碳技术
2)清洁能源开发与能源高效利用
3)非线性热科学理论与应用
4)废弃物全资源化利用
5)污染物形成机制与控制
学术/社会兼职:
北京热物理与能源工程学会常务理事。
国家水煤浆工程技术中心工业炉窑燃烧技术中心主任
开设课程:
现主讲课程:
本科生:热工过程及设备、能源与人类文明、热能工程进展
研究生:对流传热与传质(硕士)、热科学中的非线性问题(博士)
曾主讲课程:
本科生:冶金过程热物理、传热学、工程流体力学、燃料及燃烧、热工设备课程设计、流体力学与液压传动、加热炉(压加专业)、液压流体力学(流控专业)
研究生:高等流体力学(博士)
近年完成的科研项目:
[1] 2017~2020,小颗粒页岩干馏技术研发(企业合作)
[2] 2017~2019,蓄热式轧钢加热炉能效数据的测试与收集(中国标准化研究院)
[3] 2015~2018,节能环保型轻烧氧化镁新技术研发(企业合作)
[4] 2015~2018:立式石墨化炉配套余热回收系统设计(企业合作)
[5] 2015~2018,褐煤全循环提质技术研究与关键设备开发(企业合作)
[6] 2014~2017,直接还原中的焙烧与还原热工工艺设计、仿真与优化研究(中国钢研)
[7] 2014~2017,中国油页岩全资源循环利用开发研究(企业合作)
[8] 2014~2017,基于贫氧燃烧和高温热回收技术节能工业炉的开发(企业合作)
[9] 2014~2017,油页岩干馏炉及其配套干馏工艺系统设计、软件包的开发(企业合作)
国际合作:
[1] 在联合国开发计划署(UNDP)的支持下,作为能源与环保领域的专家多次出访国外,和国外知名大学、研究机构和有关公司保持着紧密的合作关系,例如美国的The Catholic University of America, 印度尼西亚的PT. Bentonit Alam Indonesia, 美国的Lanheat Corporation of USA等。
[2] 参加和参与组织了十余次在国际上有重大影响的大型国际学术会议,例如Conference on Sustainable Development of Energy, Water and Environment Systems, Croatia; International Workshop on Heat-Mass Transfer Advances for Energy Conservation and Pollution Control (Russia); International Conference on Coal Combustion Technology in Pittsburgh, USA; International Conference on Clean Coal Technology & Utilization in Florida, USA; Fine Particle Technology Symposium in Las Vegas, USA等。
奖励及荣誉:
[1] 2018年,获国务院政府特殊津贴
[2] 1993年,“工业炉窑水煤浆燃烧成套技术”获国家科学技术进步三等奖
[3] 2016年,获评北京市高等学校教学名师
[4] 2014年,获评宝钢优秀教师奖
[5] 2004年,“烧结机水煤浆点火新技术”获得中国冶金矿山科学技术奖
[6] 2002年,“烧结机用乳化及再辐射聚焦点火技术”获北京市科学技术三等奖
代表性论文:
[1] Jiang B, Xia D*, Yu B, Xiong R, Ao W, Zhang P, Cong L, An environment-friendly process for limestone calcination with CO2 looping and recovery. Journal of Cleaner Production, 2019, 240: 188147. (SCI, 5-Year IF: 7.051)
[2] Jiang B, Xia D*, Guo H, Xiao L, Qu H, Liu X, Efficient waste heat recovery system for high-temperature solid particles based on heat transfer enhancement. Applied Thermal Engineering, 2019, 155: 166-174. (SCI, 5-Year IF: 4.022)
[3] Jiang B, Xie Y, Xia D*, Liu X, A potential source for PM2.5: Analysis of fine particle generation mechanism in Wet Flue Gas Desulfurization System by modeling drying and breakage of slurry droplet. Environmental Pollution, 2019, 246: 249-256. (SCI, 5-Year IF: 6.152)
[4] Jiang B, Xia D*, Zhai F, Zhang R, Liu X, Theoretical heat conduction equation based on micro particle vibration fundamental. International Journal of Thermal Sciences, 2019, 140: 521-529. (SCI, 5-Year IF: 3.623)
[5] Jiang B, Xie Y, Xia D*, Liu X, Effect of the molecular structure of volatile organic compounds on atmospheric nucleation: A modeling study based on gas kinetic theory and graph theory, Atmospheric Environment, 2019, 213: 215-222. (SCI, 5-Year IF: 4.459)
[6] Yan S, Xia D*, Zhang X, Jiang B, A complete depolymerization of scrap tire with supercritical water participation: A molecular dynamic simulation study. Waste Management, 2019, 93:83-90. (SCI, 5-Year IF: 5.993)
[7] Jiang B, Xia D*, Zhang X. A multicomponent kinetic model established for investigation on atmospheric new particle formation mechanism in H2SO4-HNO3-NH3-VOC system. Science of the Total Environment, 2018, (616-617): 1414-1422. (SCI, 5-Year IF: 5.727)
[8] Wen Y, Xia D*. Particle size prediction of magnesium nanoparticle produced by inert gas condensation method. Journal of Nanoparticle Research, 2018, 20(1):4.
[9] Jiang B, Wen Y, Li Z, Xia D*, Liu X.Theoretical Analysis on the Removal of Cyclic Volatile Organic Compounds by Non-Thermal Plasma. Water, Air, & Soil Pollution, 2018, 229(2):35. (SCI, 5-Year IF: 1.774)
[10] Jiang B, Xia D*. Role identification of NH3 in atmospheric secondary new particle formation in haze occurrence of China, Atmospheric Environment, 2017, (163): 107-117. (SCI, 5-Year IF: 4.459)
[11] Wen Y, Xia D*, Xuan W. Modeling for particle size prediction and mechanism of silicon nitride nanoparticle synthesis by chemical vapor deposition. Aerosol Science and Technology, 2017, 51(7): 845-855. (SCI, 5-Year IF: 1.960)
[12] Wen Y, Xia D*. Particle size prediction of magnesium nanoparticle produced by inert gas condensation method. Journal of Nanoparticle Research, 2018, 20:4. (SCI, 5-Year IF: 2.009)
[13] Xia D*, Jiang B, Xie Y. Modeling and analysis of PM 2.5, generation for key factors identification in China. Atmospheric Environment, 2016, 134:208-216. (SCI, 5-Year IF: 4.459)
[14] Xia D*, Li Z, Xie Y, Zhang X. Kinetic Simulations of Volatile Organic Compounds Decomposition by Non-thermal Plasma Treatment. Water, Air, & Soil Pollution. 2016, 227:463. (SCI, 5-Year IF: 1.774)
[15] Xia D*, Zhang Q, Wu H, Xuan W. New Process of High-Quality Syngas Production through Sequential Oxidation−Reduction Cycles of Pulverized Coals. Energy & Fuel, 2016, 30, 864-870. (SCI, 5-Year IF: 2.983)
[16] Wen Y, Xia D*. Influence of thermal process on particle size distribution of ultrafine magnesium powder prepared by inert gas condensation method. Powder Technology, 2015, 286:16-21. (SCI, 5-Year IF: 3.476)
[17] Xia D*, Wen Y, Ren L, Hu X. Mechanisms of thermal process of zinc ultrafine powder preparation by inert gas condensation. Powder Technology, 2014, 257(5):175-180. (SCI, 5-Year IF: 3.476)
[18] Xia D*, Wu H, Lei X. A sequential cycle of coal gas production with high heating value consisting of reduction and oxidation reactions. Fuel, 2014, 133(1):123-128. (SCI, 5-Year IF: 5.223)
[19] Xia D*, Shen, L., Ren, L., Guo, S. A binary array method for calculating thermal conductivity of porous materials. Journal of Thermal Analysis and Calorimetry, 2014, 117 (2):825-829. (SCI, 5-Year IF: 1.981)
[20] Zhu F., Zhou Y., Feng Q., Xia D*. Moisture diffusivity in structure of random fractal fiber bed. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377 (37):2324-2328. (SCI, 5-Year IF: 1.910)
[21] Xia D*, Zhang G,Guo L. Numerical Simulation and Innovation on Magnesium Reduction Process, Journal of Thermal Science, 2006(3): 15. (SCI, 5-Year IF: 0.633)
[22] Wu Y, Xia D*, Research on the Thermal Radiation Characteristics of Ionic Crystals, Heat Transfer—-Asian Research, 2006, 35(2).
[23] Xia D*, Wu Y. Heat Radiative Characteristics of Ultra-attenuated Materials,Journal of University of Science & Technology Beijing, 2004, 11 (4).
[24] Xia D*, Wu Y. A Mathematical Model for the Heat Radiation Characteristics of Materials, Journal of Thermal Science, 2004, 13(1). (SCI, 5-Year IF: 0.633)
[25] Xia D*, Wu Y. Enhancement of Heat radioactive characteristics of Coatings by Ultra-attenuation,Journal of University of Science & Technology Beijing, 2004, 11(2).
[26] Xia D*, Yu T. A Study on the Interaction Mechanism between Thermal Radiation and materials, 2005, 14(4).
代表性发明专利:
[1] 夏德宏,蒋滨繁,郭梁,赵栗,王杏坤,袁晓强,一种难浸金矿氧化热解耦预处理方法
[2] 蒋滨繁,敖雯青,夏德宏,张培昆,一种产物气循环煅烧石灰石与二氧化碳资源化回收工艺
[3] 蒋滨繁,郭浩,曲恒宇,刘向军,夏德宏,一种针对宽粒径散料的自然分级和均衡布料方法及装置
[4] 夏德宏,曲恒宇,刘向军,蒋滨繁,一种对高温含尘烟气的除尘换热一体化处理装置及方法
[5] 夏德宏,郭梁,一种废轮胎收油系统及收油方法
[6] 雷晓平,夏德宏,王旭佳,郭梁,赵栗,粉煤热解联合气化的系统及方法
[7] 夏德宏,张艳,胡枭,一种同心环式弹性金属蜂巢及热交换装置
[8] 雷晓平,夏德宏,徐元博,赵栗,一种高效块状油页岩提油的装置及方法
[9] 夏德宏,陈良泽,利用镁还原炉炉渣生产高效钙镁硫硅肥的新工艺
[10] 夏德宏,舒斌,李一帆,一种碳化钙常压还原煅烧菱镁矿的方法
[11] 夏德宏,邬婕,吴永红,一种聚焦辐射式烧结机节能点火炉
[12] 夏德宏,高庆昌,吴永红,一种内置中心换热装置导热油加热炉
[13] 夏德宏等,大型锻造加热炉水煤浆燃烧与应用技术
[14] 夏德宏等,高浓度水煤浆燃烧器
[15] 王世均,夏德宏,卓长生等,水煤浆贮罐