教育及工作经历:
2003年–2007年,大连理工大学 能源与动力学院,学士
2007年–2010年,大连理工大学 能源与动力学院,硕士
2010年–2014年,英国诺丁汉大学 工程学部,博士
2015年–2020年,WilliamHill登录入口 威廉希尔体育 热科学与能源工程系,教师博士后、讲师
2020年至今,WilliamHill登录入口 威廉希尔体育 热科学与能源工程系,副教授
开设课程:
研究生课程:介观尺度模拟方法及应用
本科生课程:工程流体力学
研究领域:
1. 非常规油气资源高效开采与碳封存:复杂多相流、表界面科学
2. 相变储能:微纳尺度热质传递机理及其强化
3. 电化学储能:锂电池电极反应机理、电池热管理
4. 先进数值算法:格子Boltzmann方法、分子模拟、多尺度多物理场耦合
公司产品:
每年招收硕士研究生2人,欢迎对油气资源高效开采、二氧化碳封存、相变储能、锂电池等方向感兴趣的同学联系报考!
科研项目:
1. 国家重点研发计划项目,高效能仿生型储热材料和过程设计,2019.07-2024.06,子课题负责人
2. WilliamHill登录入口青年教师国际交流成长计划项目,油/水相界面特性的分子模拟研究,2022.10-2023.10,项目负责人
3. 中央高校基本科研业务费项目,表面活性剂在油/水相界面吸附的微观机理及调控,2019.12-2022.12,项目负责人
4. 国家重点实验室开放基金,页岩储层内原生水、气赋存规律及利用超临界CO2强化页岩气开采技术研究,2021.10-2022.10,项目负责人
5. 国家自然科学基金青年项目,超临界CO2强化页岩气开采与地质封存的多尺度多物理场耦合数值研究,2018.01-2020.12,项目负责人
6. 中央高校基本科研业务费项目,页岩有机质内气体吸附与扩散的机理研究,2019.01-2019.12,项目负责人
7. 中国博士后科学基金面上项目,超临界CO2强化页岩气开采与地质封存多场耦合的LBM研究,2017.06-2018.05,项目负责人
8. 中央高校基本科研业务费项目,基于三维格子玻尔兹曼方法的磁流体流动与传热特性研究,2016.01-2017.12,项目负责人
9. WilliamHill登录入口青年教师学科交叉研究培育项目,多级孔复合碳材料处理城市水体中复杂污染物的机理研究,2021.01-2022.12,项目负责人
10. 国家自然科学基金面上项目,全固态锂空气电池一体化正极界面输运及反应机制研究,2021.01-2024.12,主要参与人
11. 国家自然科学基金面上项目,非水锂空气电池空气电极放电过程的介观尺度模拟,2017.01-2020.12,主要参与人
12. 国家重点研发计划项目,冶金、化工炉窑及系统节能减排关键技术,2018.05- 2021.04,主要参与人
13. 国家重点研发计划项目,燃煤电厂新型高效除尘技术及工程示范,2017.07-2020.12,主要参与人
代表性论文:
个人学术主页:https://www.researchgate.net/profile/Wenning_Zhou
1. W.N. Zhou*, J.D. Zhu, H.B. Wang, D.B. Kong, Transport Diffusion Behaviors and Mechanisms of CO2/CH4 in Shale Nanopores: Insights from Molecular Dynamics Simulations, Energy & Fuels, 2022, 36: 11903-11912.(封面论文)
2. W.N. Zhou*, H.B. Wang, X. Yang, X.L. Liu, Y.Y. Yan, Confinement Effects and CO2/CH4 Competitive Adsorption in Realistic Shale Kerogen Nanopores, Industrial & Engineering Chemistry Research, 2020, 59(14): 6696-6706.(封面论文)
3. W.N. Zhou*, H.B. Wang, H.X. Chen, Y.Y. Yan, X.L. Liu, Adsorption Mechanism of CO2/CH4 in Kaolinite Clay: Insight from Molecular Simulation, Energy & Fuels, 2019, 33: 6542-6551.(封面论文)
4. W.N. Zhou*, Y.F. Xing, X.L. Liu, Y.Y. Yan, Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method, Physics of Fluids, 2023, 35: 012109.
5. W.N. Zhou*, S. Li, Y.H. Feng, L. Lin, Evaluation and optimization on heat transfer performance of a composite phase change material embedded in porous ceramic skeleton: A lattice Boltzmann study, International Journal of Thermal Sciences, 2023, 188: 108214.
6. Y.N. Gao, W.N. Zhou*, Z. Wen, R.F. Dou, X.L. Liu*, Meso-scale simulation of Li–O2 battery discharge process by an improved lattice Boltzmann method, Electrochimica Acta, 2023, 442: 141880.
7. Z.R. Chen, J.Y. Sun, P. Wu, W.G. Liu, C. Chen*, C. Lang, S.N. Dai, W.N. Zhou*, Cyclodextrin as a green anti-agglomerant agent in oil–water emulsion containing asphalt, Fuel, 2023, 335: 127041.
8. J.Y. Sun, Z.R. Chen, X. Wang, Y. Zhang, Y. Qin, C. Chen*, W.Z. Li, W.N. Zhou*, Displacement Characteristics of CO2 to CH4 in Heterogeneous Surface Slit Pores, Energy & Fuels, 2023, 37: 2926-2944.
9. W.N. Zhou*, Z.X. Yang, Y.H. Feng, L. Lin, Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation, International Journal of Heat and Mass Transfer, 2022, 198:123422.
10. W.N. Zhou*, L. Jiang, X.L. Liu, Y. Hu, Y.Y. Yan, Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637:128259.
11. W.N. Zhou*, X. Yang, X.L. Liu, Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms, Physical Review E, 2022, 105: 055308.
12. W.N. Zhou*, L. Jiang, X.L. Liu, Y. Hu, Y.Y. Yan, Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface, Colloids and Surfaces A, 2022, 637: 128259.
13. D.G. Qiao, X.L. Liu, R.F. Dou, Z. Wen, W.N. Zhou, L. Liu, Quantitative analysis of the inhibition effect of rising temperature and pulse charging on Lithium dendrite growth, The Journal of Energy Storage, 2022, 49(13):104137.
14. Y. Hu, H.Y. Gao, Q.Y. Yang, W.N. Zhou, C.B. Chun, Adsorption of Pb2+ and Cd2+ on reduced graphene oxide hydrogel prepared from natural cryptocrystalline graphite, Colloids and Surfaces A, 2022, 642:128630.
15. W.N. Zhou*, R.B. Jiang, Y.F. Sun, B. Chen, B.Q. Liu*, Study on multi-physical field characteristics of electrostatic precipitator with different collecting electrodes, Powder Technology, 2021, 381: 412-420.
16. X.P. Yi, X.L. Liu, K. Jiang, R.F. Dou, Z. Wen, W.N. Zhou, Effect of TiC surface oxide overlayer on the control of LixOy behavior in lithium-oxygen batteries: Implications for cathode catalyst design, Applied Surface Science, 2021, 567(30): 150785.
17. X.P. Yi, X.L. Liu, R.F. Dou, Z. Wen, W.N. Zhou, Understanding the Catalytic Activity of the Preferred Nitrogen Configuration on the Carbon Nanotube Surface and Its Implications for Li–O2 Batteries, The Journal of Physical Chemistry C, 2021, 125, 41, 22570-22580.
18. X.P. Yi, X.L. Liu, R.F. Dou, Z. Wen, W.N. Zhou, Unraveling the Control Mechanism of Carbon Nanotubes on the Oxygen Reduction Reaction and Product Growth Behavior in Lithium–Air Batteries, ACS Applied. Energy Materials, 2021, 4(3): 2148–2157.
19. H.L. Huo, X.L. Liu, Z. Wen, G.F. Lou, R.F. Dou, F.Y. Su, W.N. Zhou, Z.Y. Jiang, Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment, Energy, 2021, 228: 120566.
20. X. Yang#, W.N. Zhou#,*, X.L. Liu, Y.Y. Yan, A multiscale approach for simulation of shale gas transport in organic nanopores, Energy, 2020, 210: 118547.
21. W.N. Zhou*, S. Li, W. Lu, J.D. Zhu, Y. Liu, Molecular simulation of CH4 and CO2 adsorption in shale organic nanopores, Molecular Simulation, 2020, 1815728.
22. X.P. Yi, X.L. Liu, P. Zhang, R.F. Dou, Z. Wen, W.N. Zhou, Computational insights into LixOy formation, nucleation, and adsorption on carbon nanotube electrodes in nonaqueous Li-O2 batteries, The Journal of Physical Chemistry Letters, 2020, 11: 2195-2202.
23. X.P. Yi, X.L. Liu, K.M. Xiao, R.F. Dou, W.N. Zhou, Mechanistic evaluation of Li2O2 adsorption on carbon nanotube electrodes: A theoretical study, Applied Surface Science, 2020, 506(15): 145050.
24. S.H. Liu, X.L. Liu, R.F. Dou, W.N. Zhou, Z. Wen, L. Liu, Experimental and simulation study on thermal characteristics of 18650 lithium–iron–phosphate battery with and without spot–welding tabs, Applied Thermal Engineering, 2020, 166: 114648.
25. W.N. Zhou*, Z. Zhang, H.B. Wang, X. Yang, Molecular Investigation of CO2/CH4 Competitive Adsorption and Confinement in Realistic Shale Kerogen, Nanomaterials, 2019, 9(12): 1646.
26. W.N. Zhou, H.L. Huo, Q.Y. Li, R.F. Dou, X.L. Liu*, An Improved Comprehensive Model of Pyrolysis of Large Coal Particles to Predict Temperature Variation and Volatile Component Yields, Energies, 2019, 12(5): 884.
27. W.N. Zhou*, H.B. Wang, Z. Zhang, H.X. Chen, X.L. Liu, Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal, RSC Advances, 2019, 9: 3004-3011.
28. W.N. Zhou*, Y.Y. Yan, X.L. Liu, H.X. Chen, B.Q. Liu, Lattice Boltzmann simulation of mixed convection of nanofluid with different heat sources in a double lid-driven cavity, International Communications in Heat and Mass Transfer, 2018, 97: 39-46.
29. W.N. Zhou*, Z. Zhang, H.B. Wang, Y.Y. Yan, X.L. Liu, Molecular insights into competitive adsorption of CO2/CH4 mixture in shale nanopores, RSC Advances, 2018, 8:33939-33946.
30. W.N. Zhou*, Y.Y. Yan, X.L. Liu, B.Q. Liu, Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces, Advances in Engineering Software, 2017, 107: 51-58.
31. W.N. Zhou*, Y.Y. Yan, Y.L. Xie, B.Q. Liu, Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids inthe presence of magnetic field, International Communications in Heat and Mass Transfer, 2017, 80: 1-9.
32. W.N. Zhou, Y.Y. Yan*, Numerical investigation of the effects of a magnetic field on nanofluid flow and heat transfer by the lattice Boltzmann method, Numerical Heat Transfer, Part A: Applications, 2015, 68(1): 1-16.
33. W.N. Zhou, Y.Y. Yan*, J.L. Xu, A lattice Boltzmann simulation of enhanced heat transfer of nanofluids, International Communications in Heat and Mass Transfer, 2014, 55: 113-120.
34. H.X. Chen*, J.L. Xu, Y.Y. Yan, W.N. Zhou, Phase separation and flow pattern modulation with a T-type micro-drainage system, Applied Thermal Engineering, 2017, 122: 214-226.
35. B.Q. Liu*#, W.N. Zhou#, P.L. Tan, X.H. Shan, Q.L. Yang, Dynamic granular bed and its gas-solid separation process, Powder Technology, 2016, 301: 387-395.
36. B. Li, W.N. Zhou, Y.Y. Yan*, C.Q. Tian, Evaluation of electro-osmotic pumping effect on microporous media flow, Applied Thermal Engineering, 2013, 66: 449-455.
37. B. Li, W.N. Zhou, Y.Y. Yan*, Z.W. Han, L.Q. Ren, Numerical Modelling of Electroosmotic Driven Flow in Nanoporous Media by Lattice Boltzmann Method, Journal of Bionic Engineering, 2013, 10: 90-99.
荣誉获奖:
2021年,北京市高等公司产品成果奖二等奖(排名第8)
2020年,第十四届“董事长奖章”优秀指导教师
2018年,优秀本科生班导师